hg2088.com

氮气吸脱附曲线(BET)

分类:hg2088.com 作者:admin 来源:未知 发布:2024-01-18 23:29

  比表面积是指每克物质中所有颗粒总外表面积之和,国际单位是:m2/g 无头铆钉,比表面积是衡量物质特性的重要参量,其大小与颗粒的粒径、形状、表面缺陷及孔结构密切相关;同时,比表面积大小对物质其它的许多物理及化学性能会产生很大影响,特别是随着颗粒粒径的变小,比表面积成为了衡量物质性能的一项非常重要参量,如目前广泛应用的纳米材料。

  比表面积是粉体材料,特别是超细粉和纳米粉体材料的重要特征之一,粉体的颗粒越细,其比表面积越大,其表面效应,如表面活性、表面吸附能力、催化能力等越强。比表面积大小性能检测在许多的行业应用中是必须的,如石墨、电池、稀土、陶瓷、氧化铝、化工等行业及高校粉体材料的研发角速比、生产、分析、监测环。另外,在消防行业,灭火材料的比表面积直接决定了灭火的效率。

  微孔填充:由于吸附势的增强,微孔中会存在明显的吸附增强,对低相对压力下的吸附质分子就会具有相当强的捕捉能力。这种由微孔内相对孔壁吸附势的重叠,而引起的很低相对压力下的促进吸附机制称为微孔充填。

  毛细凝聚:在多孔性吸附剂中,若能在吸附初期形成凹液面,根据 Kelvin 公式,凹液面上的蒸汽压总要小于平液面上的饱和蒸汽压,所以在小于饱和蒸汽压时,凹液面上已达饱和而发生蒸汽的凝结,发生这种蒸汽凝结的作用总是从小孔向大孔,随着气体压力的增加,发生气体凝结的毛细孔越来越大;而脱附时,由于发生毛细凝聚后的液面曲率半径总是小于毛细凝聚前,故在相同吸附量时脱附压力总小于吸附压力。

  微孔充填与毛细凝聚在孔被填满的现象上是相似,但在本质上是不同的。微孔充填要取决于吸附分子与表面之间增强的势能作用的微观现象,发生在微孔内,相对压力很低的情况;而毛细凝聚则取决于吸附液体弯液面特性的宏观现象,毛细凝聚的必要条件为孔内能至少容纳下两层粒子,发生在中孔内,和中间相对压力下。以氮为吸附质,一般半径约在 1.6nm。

  I 型等温线在较低的相对压力下吸附量迅速上升,达到一定相对压力后吸附出现饱和值,似于 Langmuir 型吸附等温线。一般,I 型等温线往往反映的是微孔吸附剂(如分子筛、微孔活性炭)上的微孔填充现象,饱和吸附值等于微孔的填充体积。

  II 型等温线反映非孔性或者大孔吸附剂上典型的物理吸附过程,这是 BET公式(公式将在下一期文章详述)最常说明的对象。由于吸附质于表面存在较强的相互作用,在较低的相对压力下吸附量迅速上升,曲线上凸。等温线拐点通常出现于单层吸附附近,随着相对压力的继续增加,多层吸附逐步形成,当达到饱和蒸汽压时,吸附层无穷多,将导致试验难以测定准确的极限平衡吸附值。

  III 型等温线十分少见。等温线下凹不锈钢器皿,且没有拐点。吸附气体量随组分分压增加而上升。曲线下凹是因为吸附质分子间的相互作用比吸附质于吸附剂之间的强框图,第一层的吸附热比吸附质的液化热小,致使吸附初期吸附质较难于吸附,在随吸附过程的进行,吸附出现自加速现象,吸附层数也不受限制。BET 公式 C 值小于 2 时,可以描述 III 型等温线。

  IV 型等温线与 II 型等温线类似,但曲线后一段再次凸起,且中间段可能出现吸附回滞环,其对应的是多孔吸附剂出现毛细凝聚的体系。在中等的相对压力,由于毛细凝聚的发生 IV 型等温线较 II 型等温线上升得更快。中孔毛细凝聚填满后,如果吸附剂还有大孔径的孔或者吸附质分子相互作用强,可能继续吸附形成多分子层,吸附等温线继续上升。但在大多数情况下毛细凝聚结束后,出现一吸附终止平台,并不发生进一步的多分子层吸附。

  而 H2型反映的孔结构复杂,可能包括典型的“墨水瓶”孔、孔径分布不均的管形孔和密堆积球形颗粒间隙孔等。其中孔径分布和孔形状可能不好确定,孔径分布比 H1 型回线a型中脱附支很陡峭,主要是由于窄孔颈处的孔堵塞/渗(pore-blocking/percolationin a narrow range of pore necks)或者空穴效应引发的挥发(cavitation-induced evaporation),H2a型回滞环常见于硅凝胶以及一些有序三维介孔材料,比如说SBA-16, KIT-5。H2b型相对于H2a型来说,孔颈宽度(neck width)的尺寸分布要宽得多,常见于介孔泡沫硅(MCFs)和一些经过水热处理后的有序介孔硅材料(比如FDU-12等)。

  平台声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。

-